Biocluster Alphafold: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Line 48: | Line 48: | ||
rm -fr /scratch/$SLURM_JOB_ID  | rm -fr /scratch/$SLURM_JOB_ID  | ||
</pre>  | |||
= Submit Job =  | |||
* Submit job to the cluster  | |||
<pre>  | |||
sbatch example.sh  | |||
</pre>  | </pre>  | ||
Revision as of 10:52, 12 April 2022
About
- Alphafold is a Highly accurate protein structure prediction program
 - More information at https://github.com/deepmind/alphafold/
 
How to Run
- Load alphafold module. This loads alphafold, singularity, and the alphafold databases.
 
module load alphafold/2.1.2
- Create scratch folder. This is important so the temporary data will go to the local scratch disk instead of the system's /tmp folder. The /tmp has limited space which if it gets filled up, the node will become unresponsive and cause jobs to fail.
 
mkdir /scratch/$SLURM_JOB_ID export TMPDIR=/scratch/$SLURM_JOB_ID
- Run run_singularity.py to run alphafold. This is a wrapper script for the alphafold singularity container to make things easier to run.
 
run_singularity.py --data-dir $BIODB --cpus $SLURM_NTASKS --use-gpu --output-dir example_output --fasta-paths example.fasta
- --data-dir parameter should be set to $BIODB. $BIODB points to the location of the alphafold databases
 - --cpus parameter should be set to $SLURM_NTASKS. $SLURM_NTASKS is a variable which is equal to the number of processors you reserved
 - --use-gpu enables the use of GPUS. Singularity will automatically use the number of the GPUs you have reserved.
 - --output-dir parameter specifies where the output files should go. Change this parameter to an folder in your home folder
 - --fasta-paths parameter specifies your input fasta files. Only one fasta sequence per a file is allowed. If you want to run on multiple sequences, each sequence needs to be in its own file. Then you can specify multiple files like below
 
--fasta-paths example.fasta,example2.fasta,example3.fasta
Example Job Script
#!/bin/bash # ----------------SLURM Parameters---------------- #SBATCH -n 4 #SBATCH -N 1 #SBATCH -p gpu #SBATCH --gres=gpu:1 #SBATCH --mem 70G # ----------------Load Modules-------------------- module load alphafold/2.1.2 # ----------------Commands------------------------ mkdir /scratch/$SLURM_JOB_ID export TMPDIR=/scratch/$SLURM_JOB_ID run_singularity.py --data-dir $BIODB --cpus $SLURM_NTASKS --use-gpu --db-preset full_dbs --output-dir output \ --fasta-paths example.fasta rm -fr /scratch/$SLURM_JOB_ID
Submit Job
- Submit job to the cluster
 
sbatch example.sh
Parameters
- These are all the parameters for run_singularity.py. This can be accessed by running run_singularity.py --help
 
  --fasta-paths FASTA_PATHS [FASTA_PATHS ...], -f FASTA_PATHS [FASTA_PATHS ...]
                        Paths to FASTA files, each containing one sequence.
                        All FASTA paths must have a unique basename as the
                        basename is used to name the output directories for
                        each prediction.
  --is-prokaryote-list IS_PROKARYOTE_LIST [IS_PROKARYOTE_LIST ...]
                        Optional for multimer system, not used by the single
                        chain system. This list should contain a boolean for
                        each fasta specifying true where the target complex is
                        from a prokaryote, and false where it is not, or where
                        the origin is unknown. These values determine the
                        pairing method for the MSA.
  --max-template-date MAX_TEMPLATE_DATE, -t MAX_TEMPLATE_DATE
                        Maximum template release date to consider (ISO-8601
                        format - i.e. YYYY-MM-DD). Important if folding
                        historical test sets.
  --db-preset {reduced_dbs,full_dbs}
                        Choose preset model configuration - no ensembling with
                        uniref90 + bfd + uniclust30 (full_dbs), or 8 model
                        ensemblings with uniref90 + bfd + uniclust30 (casp14).
  --model-preset {monomer,monomer_casp14,monomer_ptm,multimer}
                        Choose preset model configuration - the monomer model,
                        the monomer model with extra ensembling, monomer model
                        with pTM head, or multimer model
  --benchmark, -b       Run multiple JAX model evaluations to obtain a timing
                        that excludes the compilation time, which should be
                        more indicative of the time required for inferencing
                        many proteins.
  --use-precomputed-msas
                        Whether to read MSAs that have been written to disk.
                        WARNING: This will not check if the sequence, database
                        or configuration have changed.
  --data-dir DATA_DIR, -d DATA_DIR
                        Path to directory with supporting data: AlphaFold
                        parameters and genetic and template databases. Set to
                        the target of download_all_databases.sh.
  --docker-image DOCKER_IMAGE
                        Alphafold docker image.
  --output-dir OUTPUT_DIR, -o OUTPUT_DIR
                        Output directory for results.
  --use-gpu             Enable NVIDIA runtime to run with GPUs.
  --gpu-devices GPU_DEVICES
                        Comma separated list of devices to pass to
                        NVIDIA_VISIBLE_DEVICES.
  --cpus CPUS, -c CPUS  Number of CPUs to use.